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Critical behavior for the onset of type-III intermittency observed in an electronic circuit
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Near the onset of type-III intermittent chaos observed in an autonomous electronic circuit, the critical
exponent f3 for a relation (7) ! ~¢” is experimentally determined, where () ~! is the inverse of average
laminar length and € is a parameter in the second return map, I, ,=(1+2¢)I,+bI}. We obtain
B=0.55, which is far from the Schuster theory value (8=1) and the recent experimental result
(8=0.85) shown by Kahn, Mar, and Westervelt [Phys. Rev. B 45, 8342 (1992)]. Our result is rather
close to the theoretical value of 0.5 predicted by Kodama, Sato, and Honda [Phys. Lett. A 157, 354
(1991)]. A similar result is also obtained for the critical behavior of the Lyapunov exponent.

PACS number(s): 05.45.+b, 64.60.Fr, 84.20.+m

Recently, experiments on type-III intermittency have
been performed in several nonlinear systems [1-4]. Re-
sults of these experiments can be well expressed by a
one-dimensional map introduced by Pomeau and Manne-
ville [S5]. Good agreement between experiment and
theory for the distribution of laminar length can also be
obtained in these systems [1,3]. However, near the onset
of intermittent chaos, analyses based on critical phenom-
ena are quite few. Near the critical point a relation
(1) '~¢P holds for the inverse of average laminar
length {(7) !, where ¢ is a parameter from the map by
Pomeau and Manneville. It has been theoretically ex-
pressed by Schuster that the value of the critical ex-
ponent B is 1 [6]. Kahn, Mar, and Westenelt showed
B=0.85 from their experimental data, and stated that
their value is close to that of 1 obtained by Schuster [4].
However, Kodama, Sato, and Honda predicted 3=0.5 by
means of renormalization group techniques [7]. Which
value of the critical exponent S is correct, 1 or 0.5? This
question must be solved by experimentation. In this pa-
per we experimentally present the critical exponent S
from a type-IIl intermittent time series observed in an
autonomous electronic circuit.

The electronic circuit used in this experiment is shown
in Fig. 1. NR is a negative resistance which consists of
an operational integrator and three resistors. Periodic os-
cillations with an amplitude of about 1 V and a frequency
of about 5 kHz are spontaneously induced for the resis-
tance R less than about 200 Q. Such an oscillation
reaches chaos by varying the resistance R, which is
chosen as a control parameter. In this experiment volt-
ages across the capacitor C, were measured with a 12-bit
analog to digital converter. The sampling time was set to
20 ps in all measurements. The wave form data of about
ten points a period can be taken for this sampling time.
The data length was 16 (16 384 sampling points) or 64
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kword (65 536 sampling points). We performed spline in-
terpolation when needed.

A type-IIl intermittent time series observed at
R=789.2 Q is shown in Fig. 2. The growth of subhar-
monics can clearly be seen in this figure. In Fig. 3 we
show a second return map determined from the time
series in Fig. 2. The map function of the second return
map can be written as

I 4 ,=(142e), +al?+bI} , (1

where I, denotes the kth peak value. Experimental data
were fitted to Eq. (1) with £=0.125, ¢=0.006, and
b=6.559, where these parameters were determined by the
least square method. It is a fact that € >0 is essential for
the occurrence of intermittency. The orbit is repulsive to
the region in which the map intersects a line of I}, | ,=1.

We consider the behavior of motion near the onset of
the type-III intermittent chaos as a critical phenomenon.
After the control parameter R increases beyond a critical
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FIG. 1. Circuit diagram. NR denotes a resistor with a nega-
tive resistance. Values of elements are as follows: r; =64 Q,
r,=300 Q, C,=0.022 uF, C,=0.1 puF, L,=32 mH, and
L,=22 mH. The resistance R varies from 0 to 1978 Q. The
operational integrator is Model uA741.
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FIG. 2. Time series of type-III intermittency for the case of
R=1789.2 Q.

point R_, the motion changes to a periodic oscillation.
The average laminar length gradually increases as the
control parameter approaches the critical point. That is,
the inverse number of average laminar length, (7)~!,
plays the same role as an order parameter in general criti-
cal phenomena. Displacement from the critical point is
defined as

IR —R.|
E=—"T"".

R (2)

c

It was difficult to determine the value of R, from direct
measurements. Therefore, we plotted (7)1 as a func-
tion of R and determined by extrapolation the value of
R, from a point at which {7) ! becomes 0. As a result,
R_=832.9 Q) was obtained. The displacement € must be
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FIG. 3. Second return map. A curve denotes the map func-
tion I 1, =(142¢)I +al?+bI} with £€=0.125, a=0.006, and
b=6.559.
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FIG. 4. ¢ dependence of the inverse of the average laminar

length. The values of & are estimated from the second return

maps. A straight line is drawn by the least square method, and
its slope is 0.55.

proportional to the map parameter €. We confirmed that
the relation € < ¢ holds very well by estimating the value
€ from the second return map for various values of R.
Theoretically, (7) ~1 can be estimated from the distribu-
tion function P (7). We obtain

fTwTP(T)dT
(ry="Fg——~e71/2, 3)
P(r)dr
To
where
exp( —2e7/7y)
P(r)~ P 0 )

[1—exp(—der/7y)]?% ’

and hence the relation
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FIG. 5. & dependence of the Lyapunov exponent. A straight
line with slope 0.5 is also shown as an indication.
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is yielded. In order to verify the validity of relation (5), in
Fig. 4 we show a log-log plot between {7) ~! and ¢ calcu-
lated from the experimental data. A straight line is
drawn by use of the least square method. The slope of
this line is 0.55. This implies that the following relation
holds for {(7) ! and e:

(r)1~ePf, (6)

with 8~0.55.

In this experiment it was shown that the critical ex-
ponent S is nearly equal to 0.5. This fact does not agree
with Schuster’s theory and the experiment by Kahn,
Mar, and Westervelt, but with the theory by Kodama,
Sato, and Honda.

The € dependence of the largest Lyapunov exponent A
should be similar to that of {7) ~!, namely A~ (7) ! [8].
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We also calculated the Lyapunov exponents from the ex-
perimental time series by using the method of Wolf et al.
[9]. The result is shown in Fig. 5, where we drew a line
with slope 0.5 as an indication. These points do not fit
well with the straight line in Fig. 5. However, if one
takes into account the fact that calculation of the
Lyapunov exponent from experimental data is not gen-
erally easy, it is considered that the relation A~¢%> can
be found consistent with the relation for {7) 1.

In conclusion, the onset of type-III intermittent chaos
was investigated from a standpoint of critical phenome-
na. When the inverse of average laminar length, ()},
is regarded as an order parameter, a relation (7) !~¢?
with $=0.55 is obtained experimentally. The value of
the critical exponent 8 (=0.55) is very close to the value
0.5 which is predicted by Kodama, Sato, and Honda.
The € dependence of the Lyapunov exponent A can also
be expressed as A~ €23,
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